A Fluxional Pseudo-Jahn-Teller Complex: The Structure of (Acetato)bis(1,10-phenanthroline)copper(II) Perchlorate, $\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\right] \mathrm{ClO}_{4}$, at 298 and 173 K

By Charles J. Simmons*
Chemistry Department, University of Puerto Rico, Rio Piedras, Puerto Rico 00931
Nathaniel W. Alcock
The Department of Chemistry, University of Warwick, Coventry, England
Karl Seff
Chemistry Department, University of Hawaii, Honolulu, Hawaii 96822, USA
and William Fitzgerald and Brian J. Hathaway
Chemistry Department, University College, Cork, Ireland

(Received 31 May 1984; accepted 28 August 1984)

Abstract

$M_{r}=582 \cdot 5, \quad$ monoclinic, $\quad P 2_{1} / c, \quad$ Mo $K \alpha, \quad \lambda=$ $0.71073 \AA, \quad \mu=1.05 \mathrm{~mm}^{-1}, \quad F(000)=1188 ; \quad a=$ $8.258(3), \quad b=19.070(9), \quad c=16.755(3) \AA, \quad \beta=$ $111.79(2)^{\circ}, \quad V=2450(2) \AA^{3}, \quad Z=4, \quad D_{m}=1.57(1)$, $D_{x}=1 \cdot 579 \mathrm{Mg} \mathrm{m}^{-3}, \quad T=298 \mathrm{~K} ; \quad a=8 \cdot 246$ (9), $\quad b=$ $19.009(4), \quad c=16.717(3) \AA, \quad \beta=111.61(1)^{\circ}, \quad V=$ $2436 \cdot 18$ (7) $\AA^{3}, Z=4, D_{x}=1 \cdot 588 \mathrm{Mg} \mathrm{m}^{-3}, T=173 \mathrm{~K}$. 2607 (298 K) and 3488 (173 K) unique and significant reflections gave final $R_{w} 0.040$ and 0.052 , respectively. The acetato group coordinates asymmetrically to $\mathrm{Cu}^{\text {II }}$ and the stereochemistry of the $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]^{+}$cation is intermediate between five and six coordinate. The molecular geometry of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore is temperature dependent; the $\mathrm{Cu}-\mathrm{O}$ bond distances are $2 \cdot 220$ (4) and $2.421(5) \AA$ at 298 K and $2 \cdot 155(4)$ and $2 \cdot 528(5) \AA$ at 173 K . The distortional behavior is rationalized in terms of a pseudo-Jahn-Teller formalism.

Introduction

The realization that the purported cis-distorted octahedral geometry of $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$ (Procter \& Stephens, 1969) is not a genuine static stereochemistry has been recently demonstrated by the determination of its crystal structure over the temperature range 296 to 20 K (Simmons, Clearfield, Santarsiero \& Hathaway, 1984). These results have confirmed the initial suggestion of fluxional behavior from the temperature variability of the ESR spectra

[^0]0108-7681/85/010042-05\$01.50
of a $\mathrm{Cu}^{\text {II }}$-doped $\quad\left[\mathrm{Zn}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$ system (Fitzgerald, Murphy, Tyagi, Walsh, Walsh \& Hathaway, 1981). Because the ESR spectral results of a series of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] Y$ complexes (phen $=1,10$-phenanthroline, $Y=\mathrm{BF}_{4} .2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ClO}_{4}$.$2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ClO}_{4}$ and BF_{4}) also suggest a fluxional $\mathrm{CuN} \mathrm{N}_{4} \mathrm{O}_{2}$ chromophore (Clifford, Counihan, Fitzgerald, Seff, Simmons, Tyagi \& Hathaway, 1982), we have determined the crystal structure of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ at room temperature and at low temperature in order to confirm this suggestion.

Experimental

Synthesis of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ previously reported (Clifford, Counihan, Fitzgerald, Seff, Simmons, Tyagi \& Hathaway, 1982). Composition found: $\mathrm{C}=53 \cdot 33, \mathrm{H}=3 \cdot 38, \mathrm{~N}=9 \cdot 70, \mathrm{Cl}=6 \cdot 39, \mathrm{Cu}=$ $10 \cdot 93 \%$; calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClCuN}_{4} \mathrm{O}_{6}: \mathrm{C}=53 \cdot 60$, $\mathrm{H}=3 \cdot 26, \mathrm{~N}=9.62, \mathrm{Cl}=6 \cdot 10, \mathrm{Cu}=10 \cdot 91 \% . D_{m}$ by flotation.

Single crystal $0.36 \times 0.26 \times 0.08 \mathrm{~mm}$. Syntex $P \overline{1}$ four-circle computer-controlled diffractometer used for preliminary experiments and for measurement of diffraction intensities at 298 K . Cell constants and their standard deviations determined from angular coordinates of 15 independent reflections with 2θ values up to $23 \cdot 8^{\circ}$. $\theta-2 \theta$ scan mode with constant scan speed (ω) in 2θ of $1^{\circ} \mathrm{min}^{-1}$. Background time to scan time ratio $1 \cdot 0$; scan range varied from -1.0 to $+1 \cdot 0^{\circ}$ (2 θ) about $K \alpha_{1}-K \alpha_{2}$ angles. Intensities of three standard reflections, measured after every 100 reflections, decreased by $\sim 2 \%$ during data collection, correction applied. Standard deviations assigned according to $\sigma(I)=\left[\omega^{2}\left(C T+B_{1}+B_{2}\right)+(p I)^{2}\right]^{1 / 2}, C T$
(C) 1985 International Union of Crystallography
is total integrated count, B_{1} and B_{2} are background counts, $p(0.02)$, is a factor to downweight intense reflections, and $I=\omega\left(C T-B_{1}-B_{2}\right) .4334$ symmetryindependent reflections measured ($3<2 \theta<50^{\circ}$), 2607 with $I>3 \sigma(I)$. All diffraction intensities corrected for Lorentz-polarization and absorption (Ottersen, 1974, 1976; Busing \& Levy, 1957); calculated transmission coefficients from 0.79 to 0.93 .
Data at 173 K collected on Syntex $P 2_{1}$ four-circle diffractometer with LT-1 low-temperature attachment. Single crystal $0.43 \times 0.68 \times 0.60 \mathrm{~mm} . \theta-2 \theta$ scan mode with variable scan speed $6-29^{\circ} \mathrm{min}^{-1}$, depending on intensity of 2 s pre-scan. Background time to scan time ratio 0.5 ; scan range varied from -1.0 to $+1 \cdot 1^{\circ}(2 \theta)$ about the $K \alpha_{1}-K \alpha_{2}$ angles. Three standard reflections, measured after every 500 reflections, showed no systematic variation in intensity during data collection. 3488 reflections with $I>3 \sigma(I)$ $\left(0<2 \theta<50^{\circ}\right)$ obtained. All diffraction intensities corrected for Lorentz-polarization and absorption (Alcock, 1970); calculated transmission coefficients from 0.68 to 0.75 .

Space group $P 2_{1} / c$ assigned unambiguously on basis of systematic absences, $l=2 n+1$ for $h 0 l$ and $k=2 n+1$ for $0 k 0$. Position of Cu^{11} ion determined from three-dimensional Patterson function; all other non-H atoms subsequently determined from Fourier difference syntheses (Hubbard, Quicksall \& Jacobson, 1971). phen H positions calculated assuming $\mathrm{C}-\mathrm{H}$ of $0.89 \AA$, these atoms assigned isotropic thermal parameters equal to corresponding values of C atoms to which they are bonded. Full-matrix leastsquares refinements on F (Gantzel, Sparks \& Trueblood, 1976) with anisotropic thermal parameters for all non-H atoms, $R=0.043, R_{w}=0.040, S=1.82$ ($T=298 \mathrm{~K}$). 2607 observations in least-squares refinements, 343 parameters, $w=\left[\sigma\left(F_{o}\right)\right]^{-2}$. Atomic scattering factors (International Tables for X-ray Crystallography, 1974, pp. 72-98) corrected for anomalous dispersion (International Tables for X-ray Crystallography, 1974, pp. 148-150). Max. Δ in final cycle of least squares was 20% of corresponding e.s.d. Final difference Fourier syntheses showed no excursions above background.

Positional parameters from room-temperature structure used as starting coordinates for refinement of low-temperature structure. Full-matrix leastsquares refinements on F [all calculations with SHELX 76 (Sheldrick, 1976)] with anisotropic thermal parameters for all non-H atoms (phen H positions calculated assuming $\mathrm{C}-\mathrm{H}=1.08 \AA$, not refined), $R=$ 0.049 and $R_{w}=0.052 .3488$ observations used in least squares, $\quad w=4.4335\left[\sigma^{2}\left(F_{o}\right)+2.35 \times 10^{-4}\left(F_{o}\right)^{2}\right]^{-1}$. Atomic scattering factors (International Tables for X-ray Crystallography, 1974, pp. 72-98) corrected for anomalous dispersion (International Tables for X-ray Crystallography, 1974, pp. 148-150). Max. Δ in final cycle of least squares was 1% of corresponding e.s.d.

Final difference Fourier syntheses showed no excursions above background.*

Discussion

The final positional coordinates are given in Table 1 and bond lengths and selected bond angles appear in Table 2.
The crystal and molecular structure of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ is shown in Figs. 1 and 2. The acetato group coordinates asymmetrically to $\mathrm{Cu}^{\text {II }}$ and the stereochemistry of the $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]^{+}$cation is intermediate between five and six coordinate. The $\mathrm{Cu}-\mathrm{O}$ bond distances are $2 \cdot 220$ (4) and $2 \cdot 421$ (5) \AA at 298 K and $2 \cdot 155$ (4) and $2.528(5) \AA$ at 173 K , indicating that the molecular geometry of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore is temperature dependent (see below). The nearly equivalent and slightly temperature dependent $\mathrm{Cu}(1)-\mathrm{N}(13)$ and $\mathrm{Cu}(1)-\mathrm{N}(27)$ axial bonds $[1.999(4), 2.006(4) \AA(T=298 \mathrm{~K})$ and $2.002(3)$, 2.012 (3) $\AA(T=173 \mathrm{~K})$ respectively] are shorter than the nonequivalent and moderately temperature dependent $\mathrm{Cu}(1)-\mathrm{N}(2)$ and $\mathrm{Cu}(1)-\mathrm{N}(16)$ equatorial bonds $[2.098(4), \quad 2 \cdot 130(4) \AA(T=298 \mathrm{~K})$ and $2 \cdot 097$ (3), $2 \cdot 141$ (3) $\AA(T=173 \mathrm{~K})$ respectively]. [The bonds between $\mathrm{Cu}(1)$ and the nearly coplanar $\mathrm{N}(2)$, $\mathrm{N}(16), \mathrm{O}(30), \mathrm{O}(31)$ atoms are classified as 'equatorial', while those bonds between $\mathrm{Cu}(1)$ and $N(13)$ and $N(27)$, which are nearly perpendicular to this equatorial plane, are classified as 'axial'.] The axial $\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{N}(27)$ angle is within 2° of 180°, and all eight out-of-plane $\mathrm{N}_{\mathrm{ax}}-\mathrm{Cu}-\mathrm{N}_{\mathrm{eq}}$ and $\mathrm{Nax}_{\mathrm{ax}}-\mathrm{Cu}-$ O_{eq} bond angles are within $\pm 10^{\circ}$ of 90°.

Although it is not entirely apparent in Fig. 1, the thermal motion of the ligating acetato group is anomalously large at room temperature, suggesting that the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore is either statically or dynamically disordered. The r.m.s. values of the O and C thermal ellipsoids, $U_{i i}^{1 / 2}(\AA)$, are ($T=298 \mathrm{~K}$): $\mathrm{O}(30)=0.42,0.27,0.24 ; \mathrm{O}(31)=0.56,0.29,0.20$; $\mathrm{C}(32)=0 \cdot 24,0 \cdot 20,0 \cdot 19$; and $\mathrm{C}(33)=0 \cdot 58,0 \cdot 29,0 \cdot 26$. More importantly, the angles between the major axes of the extremely anisotropic O thermal ellipsoids and the $\mathrm{Cu}-\mathrm{O}$ bond vectors are only 18 and 25°. Thus, the vibrational amplitudes of the O atoms are not only considerable along the $\mathrm{Cu}-\mathrm{O}$ bonds but, because of the near $90^{\circ} \mathrm{Cu}(1)-\mathrm{O}(30,31)-\mathrm{C}(32)$ angles, they are also considerably perpendicular to the $\mathrm{C}-\mathrm{O}$ bonds, which undoubtedly accounts for their foreshortening. The mean observed C-O distances,

[^1]Table 1. Fractional atomic coordinates for nonhydrogen atoms with e.s.d.'s in parentheses

$$
U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i .} \mathbf{a}_{j}
$$

	$T=298 \mathrm{~K}$					$T=173 \mathrm{~K}$		
	\boldsymbol{x}	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$	\boldsymbol{x}	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cu}(1)$	$0 \cdot 3788$ (1)	0.33356 (3)	$0 \cdot 32675$ (3)	$0 \cdot 0426$ (3)	$0 \cdot 38103$ (5)	$0 \cdot 33411$ (2)	$0 \cdot 32603$ (3)	0.0281 (3)
N(2)	0.1697 (5)	0.2776 (2)	0.2387 (2)	0.044 (3)	$0 \cdot 1712$ (4)	0.2783 (2)	0.2384 (2)	0.030 (2)
C(3)	0.0931 (8)	0.2185 (3)	0.2463 (3)	0.057 (4)	0.0940 (5)	$0 \cdot 2187$ (2)	$0 \cdot 2465$ (3)	0.041 (2)
C(4)	-0.0365 (8)	0.1863 (3)	0.1782 (4)	0.064 (4)	-0.0375 (6)	$0 \cdot 1872$ (2)	0.1786 (3)	$0 \cdot 049$ (3)
C(5)	-0.0876 (7)	0.2156 (3)	0.0990 (4)	0.062 (4)	-0.0894 (6)	$0 \cdot 2160$ (2)	0.0979 (3)	0.043 (2)
C(6)	-0.0106 (7)	$0 \cdot 2782$ (3)	0.0865 (3)	0.049 (3)	-0.0112 (5)	0.2789 (2)	0.0861 (2)	0.035 (2)
C(7)	-0.0532 (8)	0.3133 (3)	0.0058 (3)	0.059 (4)	-0.0553 (6)	0.3138 (2)	0.0049 (3)	$0 \cdot 040$ (2)
C(8)	0.0257 (8)	$0 \cdot 3720$ (3)	-0.0013 (3)	0.061 (4)	0.0262 (4)	0.3741 (2)	-0.0025 (2)	0.041 (2)
C(9)	0.1567 (7)	0.4042 (3)	0.0721 (3)	0.048 (3)	0.1579 (5)	$0 \cdot 4050$ (2)	0.0707 (2)	$0.034(2)$
C(10)	0.2456 (7)	0.4660 (3)	0.0692 (3)	0.058 (4)	0.2481 (6)	0.4670 (2)	0.0672 (3)	0.044 (2)
C(11)	0.3703 (8)	0.4901 (3)	0.1421 (4)	0.065 (4)	0.3747 (6)	0.4914 (2)	0.1406 (3)	0.046 (3)
C(12)	$0 \cdot 4088$ (7)	0.4532 (3)	$0 \cdot 2186$ (3)	0.057 (4)	0.4142 (6)	0.4541 (2)	0.2168 (3)	0.041 (2)
N(13)	0.3267 (5)	0.3953 (2)	0.2243 (2)	0.044 (3)	0.3303 (4)	0.3963 (2)	$0 \cdot 2230$ (2)	$0.032(2)$
C(14)	$0 \cdot 2010$ (6)	$0 \cdot 3706$ (3)	$0 \cdot 1520$ (3)	0.042 (3)	0.2029 (5)	0.3716 (2)	0.1506 (2)	0.029 (2)
C(15)	0.1177 (6)	$0 \cdot 3071$ (2)	0.1594 (3)	0.039 (3)	$0 \cdot 1184$ (5)	0.3078 (2)	0.1587 (2)	0.029 (2)
$N(16)$	0.3054 (5)	0.4030 (2)	0.4071 (2)	0.042 (3)	0.3064 (4)	0.4041 (2)	0.4068 (2)	0.029 (2)
C(17)	0.2448 (7)	0.4671 (3)	0.3954 (3)	0.057 (4)	0.2457 (5)	0.4697 (2)	$0 \cdot 3949$ (3)	0.039 (2)
C(18)	0.2178 (8)	0.5059 (3)	0.4597 (4)	0.071 (4)	$0 \cdot 2184$ (6)	0.5084 (2)	0.4598 (3)	0.051 (3)
$\mathrm{C}(19)$	$0 \cdot 2556$ (8)	0.4780 (3)	0.5383 (4)	0.068 (4)	0.2559 (6)	0.4796 (2)	0.5391 (3)	0.048 (3)
$\mathrm{C}(20)$	0.3217 (7)	0.4096 (3)	0.5544 (3)	0.046 (3)	$0 \cdot 3219$ (5)	0.4102 (2)	0.5549 (2)	0.034 (2)
$\mathrm{C}(21)$	0.3701 (8)	$0 \cdot 3756$ (3)	0.6353 (3)	0.061 (4)	0.3693 (6)	0.3760 (2)	0.6361 (2)	0.042 (2)
C (22)	0.4338 (8)	0.3105 (3)	0.6475 (3)	0.060 (4)	0.4325 (6)	0.3100 (2)	0.6474 (2)	0.042 (2)
C(23)	0.4549 (6)	$0 \cdot 2715$ (3)	0.5784 (3)	0.047 (3)	0.4539 (5)	0.2716 (2)	0.5780 (2)	0.031 (2)
C (24)	0.5179 (7)	0.2024 (3)	0.5851 (4)	0.056 (4)	0.5196 (5)	0.2018 (2)	0.5861 (3)	0.039 (2)
C(25)	0.5281 (7)	0.1698 (3)	0.5153 (4)	0.055 (3)	0.5301 (5)	$0 \cdot 1687$ (2)	0.5155 (3)	0.040 (2)
C (26)	0.4793 (7)	$0 \cdot 2059$ (3)	0.4376 (3)	0.049 (3)	0.4811 (5)	0.2053 (2)	0.4370 (3)	0.035 (2)
$\mathrm{N}(27)$	$0 \cdot 4218$ (5)	0.2707 (2)	0.4285 (2)	0.040 (3)	0.4234 (4)	0.2710 (1)	0.4284 (2)	0.028 (2)
C (28)	0.4070 (6)	0.3039 (3)	0.4973 (3)	0.038 (3)	0.4085 (4)	$0 \cdot 3040$ (2)	0.4974 (2)	0.027 (2)
C (29)	$0 \cdot 3440$ (6)	$0 \cdot 3744$ (3)	0.4861 (3)	0.039 (3)	0.3441 (5)	0.3752 (2)	0.4861 (2)	0.026 (2)
$\mathrm{O}(30)$	0.6547 (6)	0.3679 (2)	$0 \cdot 3859$ (3)	0.114 (3)	0.6486 (6)	0.3682 (2)	$0 \cdot 3824$ (3)	0.094 (3)
$\mathrm{O}(31)$	0.6315 (7)	0.2822 (2)	0.3092 (2)	0.144 (4)	0.6454 (8)	0.2783 (3)	$0 \cdot 3097$ (2)	0.126 (4)
C(32) $\mathrm{C}(33)$	0.7143 (6) $0.8969(10)$	$0.3277(2)$ 0.3373 (5)	$0.3512(3)$ $0.3600(7)$	$0.044(3)$ $0.173(8)$	0.7224 (5)	0.3268 (2)	0.3516 (2)	0.034 (2)
$\stackrel{\mathrm{Cl}(34)}{ }$	$0.8969(10)$ $0.1528(2)$	$0.3373(5)$ $0.0147(1)$	$0.3600(7)$ $0.3138(1)$	0.173 (8) 0.058 (9)	$0.9042(8)$ 0.1491 (1)	$0.3404(4)$ $0.0151(1)$	$0.3638(6)$ $0.3134(1)$	$0.124(6)$ $0.039(1)$
$\mathrm{O}(35)$	$0 \cdot 1695$ (6)	0.0101 (2)	0.2332 (3)	$0 \cdot 106$ (3)	0.1646 (5)	0.0100 (2)	0.2321 (2)	$0.039(1)$ $0.073(2)$
$\mathrm{O}(36)$	0.2672 (6)	0.0683 (2)	0.3614 (3)	0.117 (4)	0.2639 (5)	0.0688 (2)	0.3617 (3)	0.077 (3)
$\mathrm{O}(37)$	-0.0211 (5)	0.0351 (2)	$0 \cdot 3027$ (2)	0.091 (3)	-0.0265 (4)	0.0344 (2)	0.3021 (2)	0.063 (2)
O(38)	$0 \cdot 1942$ (7)	-0.0484 (2)	$0 \cdot 3564$ (3)	$0 \cdot 142$ (5)	0.1942 (6)	-0.0487(2)	$0 \cdot 3577$ (3)	0.092 (3)

Table 2. Bond lengths (\AA) and selected bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	$T=298 \mathrm{~K}$	$T=173 \mathrm{~K}$		$T=298 \mathrm{~K}$	$T=173 \mathrm{~K}$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	2.098 (4)	2.097 (3)	$\mathrm{O}(30)-\mathrm{C}(32)$	$1 \cdot 175$ (6)	$1 \cdot 219$ (5)
$\mathrm{Cu}(1)-\mathrm{N}(13)$	1.994 (4)	$2 \cdot 002$ (3)	$\mathrm{O}(31)-\mathrm{C}(32)$	1-166 (6)	$1 \cdot 190$ (5)
$\mathrm{Cu}(1)-\mathrm{N}(16)$	2-130 (4)	2.141 (3)	C(32)-C(33)	1.471 (9)	1.459 (7)
$\mathrm{Cu}(1)-\mathrm{N}(27)$	$2 \cdot 006$ (4)	$2 \cdot 012$ (3)			
$\mathrm{Cu}(1)-\mathrm{O}(30)$	$2 \cdot 220$ (4)	$2 \cdot 155$ (4)	$\mathrm{Cl}(34)-\mathrm{O}(35)$	1.410 (4)	1.413 (3)
$\mathrm{Cu}(1)-\mathrm{O}(31)$	$2 \cdot 421$ (5)	$2 \cdot 528$ (5)	$\mathrm{Cl}(34)-\mathrm{O}(36)$	1.419 (5)	1.424 (3)
			$\mathrm{Cl}(34)-\mathrm{O}(37)$	1.432 (4)	1.438 (3)
			$\mathrm{Cl}(34)-\mathrm{O}(38)$	$1 \cdot 376$ (5)	1.398 (4)
$\mathrm{N}(2)-\mathrm{C}(3)$	$1 \cdot 321$ (7)	$1 \cdot 331$ (5)	$\mathrm{N}(16)-\mathrm{C}(17)$	$1 \cdot 307$ (7)	$1 \cdot 327$ (5)
$\mathrm{N}(2)-\mathrm{C}(15)$	$1 \cdot 358$ (6)	$1 \cdot 361$ (4)	$\mathrm{N}(16)-\mathrm{C}(29)$	$1 \cdot 358$ (6)	$1 \cdot 360$ (4)
C(3)-C(4)	$1 \cdot 384$ (8)	$1 \cdot 385$ (6)	$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 393$ (8)	1.398 (6)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 355$ (9)	$1 \cdot 370$ (6)	$\mathrm{C}(18)-\mathrm{C}(19)$	$1 \cdot 345$ (9)	1.360 (6)
C(5)-C(6)	1.404 (8)	1.407 (6)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.401 (8)	1.414 (6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.431 (8)	1.432 (6)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.419 (7)	1.425 (5)
$\mathrm{C}(6)-\mathrm{C}(15)$	1.399 (7)	1.401 (5)	$\mathrm{C}(20)-\mathrm{C}(29)$	1-396 (7)	1.397 (5)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 322$ (9)	$1 \cdot 356$ (6)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.334 (9)	1.346 (6)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.440 (8)	1.430 (5)	C(22)-C(23)	1.441 (7)	1.433 (6)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.398 (8)	$1 \cdot 405$ (6)	C(23)-C(24)	$1 \cdot 405$ (8)	1.422 (6)
$\mathrm{C}(9)-\mathrm{C}(14)$	1.404 (7)	$1 \cdot 399$ (5)	$\mathrm{C}(23)-\mathrm{C}(28)$	1.409 (7)	1.401 (5)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1 \cdot 353$ (8)	$1 \cdot 367$ (6)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 354$ (8)	1.367 (6)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.392 (8)	1.388(6)	$\mathrm{C}(25)-\mathrm{C}(26)$	$1 \cdot 395$ (7)	$1 \cdot 407$ (5)
$\mathrm{C}(12)-\mathrm{N}(13)$	1.317 (7)	$1 \cdot 322$ (5)	$\mathrm{C}(26)-\mathrm{N}(27)$	1-312(6)	1-326 (5)
$\mathrm{N}(13)-\mathrm{C}(14)$	1.353 (6)	1.361 (4)	$\mathrm{N}(27)-\mathrm{C}(28)$	$1 \cdot 359$ (6)	1.356 (5)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.421 (7)	1.430 (5)	C(28)-C(29)	1.427 (7)	1.441 (5)
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(13)$	80.6(2)	80.8 (1)	$\mathrm{N}(16)-\mathrm{Cu}(1)-\mathrm{O}(30)$	$91 \cdot 1$ (1)	$91 \cdot 3$ (1)
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(16)$	$114 \cdot 1$ (2)	113.6 (1)	$\mathrm{N}(16)-\mathrm{Cu}(1)-\mathrm{O}(31)$	142.1(1)	142.0 (1)
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(27)$	97.7 (2)	97.6 (1)	$\mathrm{N}(27)-\mathrm{Cu}(1)-\mathrm{O}(30)$	88.2 (1)	88.8 (1)
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{O}(30)$	154.7 (2)	154.9 (1)	$\mathrm{N}(27)-\mathrm{Cu}(1)-\mathrm{O}(31)$	88.5 (2)	87.4 (1)
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{O}(31)$	$103 \cdot 2$ (2)	103.6(1)	$\mathrm{O}(30)-\mathrm{Cu}(1)-\mathrm{O}(31)$	$52 \cdot 1$ (1)	$52 \cdot 3$ (1)
$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{N}(16)$	98.9 (2)	99.1 (1)			
$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{N}(27)$	177.9(2)	178.1 (1)			
$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{O}(30)$	93.9 (2)	93.1 (1)	$\mathrm{O}(30)-\mathrm{C}(32)-\mathrm{O}(31)$	121.7 (5)	120.5 (5)
$\mathrm{N}(13)-\mathrm{Cu}(1)-\mathrm{O}(31)$	93.1 (2)	94.0 (1)	$\mathrm{O}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$118 \cdot 1$ (5)	118.3 (5)
$\mathrm{N}(16)-\mathrm{Cu}(1)-\mathrm{N}(27)$	$80 \cdot 6$ (2)	$80 \cdot 5$ (1)	$\mathrm{O}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	120.2 (6)	121-1(6)

$1 \cdot 17$ (1) $(298 \mathrm{~K})$ and $1 \cdot 20(1) \AA(173 \mathrm{~K})$, are significantly shorter than the mean value of $1 \cdot 26 \AA$ determined from the literature data reported for twenty bidentate nonbridging acetato metal complexes.

The bond lengths and angles in the phen ligands of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ agree well with the mean values of chemically equivalent bonds in other phen complexes (Frenz \& Ibers, 1972) and with the weighted-mean values reported for molecular 1,10phenanthroline (Nishigaki, Yoshioka \& Nakatsu, 1978). The ClO_{4}^{-}group also has large thermal motion; however, a foreshortening of the $\mathrm{Cl}-\mathrm{O}$ bonds is barely discernible. The mean $\mathrm{Cl}-\mathrm{O}$ bond lengths, 1.41 (298 K) and $1.42 \AA(173 \mathrm{~K})$, compare favorably with the value of $1.43 \AA$ reported for well defined ClO_{4}^{-} groups (Taylor, Hall \& Amma, 1969). The observed $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ bond angles $\left(108-111^{\circ}\right)$ are reasonably close to tetrahedral and fall within the wide range generally found for ClO_{4}^{-}groups (Figgis, Wadley \& Graham, 1972).

In addition to $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$, the crystal structures of other $[\mathrm{Cu}(\mathrm{phen}$ or bpy $\left.)_{2}(\mathrm{OXO})\right] Y$ complexes $\left(\mathrm{OXO}^{-}=\right.$a bidentate chelating ligand) have been determined. Several observations can be made by examining the results (Simmons, Seff, Clifford \& Hathaway, 1983). (1) The molecular geometry of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore varies significantly between cation-distortion isomers. For example, the $\mathrm{Cu}-\mathrm{O}$ bond distances in $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ are $2 \cdot 220(4)$ and $2.421(5) \AA(T=298 \mathrm{~K})$, while the corresponding bonds in $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{BF}_{4}$ are 1.999 (4) and $2 \cdot 670$ (5) $\AA(T=298 \mathrm{~K})$. (2) A pattern of continuous distortion from C_{2} symmetry exists: as a pair of trans $\mathrm{Cu}-\mathrm{O}_{\mathrm{eq}}$ and $\mathrm{Cu}-\mathrm{N}_{\mathrm{eq}}$ bonds lengthen, the other pair of trans $\mathrm{Cu}-\mathrm{O}_{\mathrm{eq}}$ and $\mathrm{Cu}-\mathrm{N}_{\mathrm{eq}}$ bonds shorten. Furthermore, the $\mathrm{Cu}-\mathrm{N}_{\mathrm{ax}}$ bonds become slightly unequal:

Fig. 1. ORTEP drawing of the pseudo-Jahn-Teller complex $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ using 20% probability ellipsoids ($T=298 \mathrm{~K}$).
the N atoms in the shorter $\mathrm{Cu}-\mathrm{N}_{\mathrm{ax}}$ bonds always belong to the same phen (or bpy) ligands as do the N atoms in the shorter $\mathrm{Cu}-\mathrm{N}_{\text {eq }}$ bonds. \{This form of distortion is indeed observed for [Cu (phen) $\left.)_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$: the trans equatorial $\mathrm{Cu}(1)-\mathrm{O}(31)$ and $\mathrm{Cu}(1)-\mathrm{N}(16)$ bonds are longer than the other trans equatorial $\mathrm{Cu}(1)-\mathrm{O}(30)$ and $\mathrm{Cu}(1)-$ $\mathrm{N}(2)$ bonds, and the axial $\mathrm{Cu}(1)-\mathrm{N}(13)$ and $\mathrm{Cu}(1)-$ $N(27)$ bonds are slightly unequal, albeit in the right sense.\} (3) The amplitude and anisotropy of the thermal motions of the O atoms increase as the OXO^{-} group coordinates more symmetrically to Cu^{11}; concomitantly, the angles between the major axes of the O thermal ellipsoids and the $\mathrm{Cu}-\mathrm{O}$ bond vectors decrease. (4) The molecular geometry of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore is temperature dependent. (5) The distortion from C_{2} symmetry in $\left[\mathrm{Zn}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$, an orbitally nondegenerate d^{10} complex, is considerably less and qualitatively different from that in $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$, even though the crystals are isostructural; thus, the distortional behavior in the $\mathrm{Cu}^{\text {II }}$ systems is not attributable to crystal-packing forces. (6) The thermal motions of the acetato O atoms are remarkably large and anisotropic in the disordered complex, $\left[\mathrm{Cu}(\mathrm{phen})_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]$ $\mathrm{BF}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(P 2 / c, Z=2\right.$ and the $\mathrm{Cu}^{\mathrm{II}}$ ions lie on crystallographic C_{2} axes), in contrast with the small and nearly isotropic thermal motions of the acetato O atoms in the isostructural, but ordered, Zn analogue. Thus, a $\left[\mathrm{Cu}(\text { phen or bpy })_{2}(\mathrm{OXO})\right] Y$ complex apparently cannot possess static C_{2} symmetry.

On the basis of these observations, it has been suggested that the $\left[\mathrm{Cu}(\text { phen or bpy })_{2}(\mathrm{OXO})\right] Y$ complexes are susceptible to a pseudo-Jahn-Teller (or synonymously 'second-order Jahn-Teller') distortion away from C_{2} symmetry. This occurs via a vibronic coupling of the ${ }^{2} A$ ground and ${ }^{2} B$ excited electronic states (Simmons, Clearfield, Fitzgerald, Tyagi \& Hathaway, 1983; Simmons, Seff, Clifford \& Hathaway, 1983). The two-dimensional adiabatic poten-tial-energy surface for these pseudo-degenerate elec-

Fig. 2. ORTEP stereoview of the crystal structure of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ using 15% probability ellipsoids ($T=298 \mathrm{~K}$). The view is approximately into the + a direction, with $+\mathbf{b}$ extending horizontally to the right, and $+\mathbf{c}$ extending upwards in the plane of the page.
tronic states, which is consistent with theory (Öpik \& Pryce, 1957; Hochstrasser \& Marzzacco, 1969; Bersuker, 1975; Henneker, Penner \& Siebrand, 1978) and with the aforementioned crystallographic results, consists of a double-minimum ground-state curve and a parabolic excited-state curve. The $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophores that correspond to the minima have maximally distorted $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bonds, which are disposed according to the distortion pattern and its inverse previously described in observation (2). Thus, if the minima are equivalent, the average site symmetry is C_{2}, as in $\left[\mathrm{Cu}(\mathrm{phen})_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{BF}_{4}$. $2 \mathrm{H}_{2} \mathrm{O}$; if the minima are non-equivalent and separated in energy by ΔE, the average site symmetry is C_{1}, as in $\left.[\mathrm{Cu} \text { (phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ (Simmons, Clearfield, Fitzgerald, Tyagi \& Hathaway, 1983; Simmons, Seff, Clifford \& Hathaway, 1983).

According to this model, the molecular geometry of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ is a statistical mean weighted according to the relative thermal populations of two minima, which, at a given temperature, is a function of ΔE. The observed distortions from C_{2} symmetry, as measured by

$$
\begin{aligned}
\delta^{o}=\{ & \{[\mathrm{Cu}(1)-\mathrm{N}(27)]-[\mathrm{Cu}(1)-\mathrm{N}(13)]\} \\
& +\{[\mathrm{Cu}(1)-\mathrm{N}(16)]-[\mathrm{Cu}(1)-\mathrm{N}(2)]\} \\
& +\{[\mathrm{Cu}(1)-\mathrm{O}(31)]-[\mathrm{Cu}(1)-\mathrm{O}(30)]\},
\end{aligned}
$$

should increase with decreasing temperatures, a result of depopulating the higher-energy well. The increase in the δ° values from 0.25 (1) $(298 \mathrm{~K})$ to 0.44 (1) \AA $(173 \mathrm{~K})$ is consistent with the model. Because of the marked temperature dependence of its molecular geometry, the ΔE value for $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ should be relatively small, of the order of $k T$ or less. In fact, a preliminary calculation of ΔE using a methodology that incorporates temperature-variable crystallographic data with Boltzmann statistics (Simmons, Clearfield, Fitzgerald, Tyagi \& Hathaway, 1983), gives a value of only 125 (15) cm^{-1} (Simmons \& Hathaway, 1984), compared with the value of $74 \mathrm{~cm}^{-1}$ accurately determined for the more symmetric $\left[\mathrm{Cu}(\mathrm{bpy})_{2}(\mathrm{ONO})\right] \mathrm{NO}_{3}$ complex (Simmons, Clearfield, Santarsiero \& Hathaway, 1984). With this value for ΔE, the relative thermal populations of the two minima are 64 and 36% at 298 K , which together with the large differences in corresponding $\mathrm{Cu}-\mathrm{O}$ bonds between conformers explains the large anisotropic thermal motions observed for the acetato O atoms at room temperature. (Conversely, small and nearly isotropic
thermal motions are observed for the coordinated phen N atoms because of the small differences in $\mathrm{Cu}-\mathrm{N}$ bonds between conformers.) The ΔE values are quite sensitive to variations in crystal-packing forces, as demonstrated by the significant structural differences between $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ and $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{BF}_{4}$ (see above). The unusual crystallographic properties and temperature-variable ESR spectra of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right] \mathrm{ClO}_{4}$ strongly suggest that it consists of two interconverting asymmetric structures (a 'dynamic pseudo-Jahn-Teller effect') associated with two energetically nonequivalent and thermally accessible energy minima.

References

Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. AHMED, pp. 271-278. Copenhagen: Munksgaard.

Bersuker, I. B. (1975). Coord. Chem. Rev. 14, 357-417.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
Clifford, F., Counihan, E., Fitzgerald, W., Seff, K., Simmons, C. J., Tyagi, S. \& Hathaway, B. J. (1982). J. Chem. Soc. Chem. Commun. pp. 196-198.
Figgis, B. N., Wadley, L. G. B. \& Graham, J. (1972). Acta Cryst. B28, 187-192.
Fitzgerald, W., Murphy, B., Tyagi, S., Walsh, A., Walsh, B. \& Hathaway, B. J. (1981). J. Chem. Soc. Dalion Trans. pp. 2271-2279.
Frenz, B. A. \& Ibers, J. A. (1972). Inorg. Chem. 11, 1109-1116.
Gantzel, P. K., Sparks, R. A. \& Trueblood, K. (1976). UCLALS4. Am. Crystallogr. Assoc. Program Library (old) No. 317, modified by K. Seff \& T. Ottersen.
Henneker, W. H., Penner, A. P. \& Siebrand, W. (1978). J. Chem. Phys. 69, 1884-1896.

Hochstrasser, R. M. \& Marzzacco, C. A. (1969). Molecular Luminescence, edited by E. C. Lim, pp. 631-656. New York: W. A. Benjamin.

Hubbard, C. R., Quicksall, C. O. \& Jacobson, R. A. (1971). ALFF (Ames Laboratory fast Fourier). lowa State Univ., USA. International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Nishigaki, S., Yoshioka, H. \& Nakatsu, K. (1978). Acta Cryst. B34, 875-879.
Öpik, U. \& Pryce, M. H. L. (1957). Proc. R. Soc. London Ser. A, 238, 425-447.
OtTERSEN, T. (1974). Program ABSCO. Univ. of Oslo, Norway. Ottersen, T. (1976). Program LP-76. Univ. of Hawaii, USA.
Procter, I. M. \& Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1248-1255.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
Simmons, C. J., Clearfield, A., Fitzgerald, W., Tyagi, S. \& Hathaway, B. J. (1983). Inorg. Chem. 22, 2463-2466.
Simmons, C. J., Clearfield, A., Santarsiero, B. \& Hath. AWAY, B. J. (1984). Unpublished results.
Simmons, C. J. \& Hathaway, B. J. (1984). Unpublished results.
Simmons, C. J., Seff, K., Clifford, F. \& Hathaway, B. J. (1983). Acta Cryst. C39, 1360-1367.

Taylor, I. F. Jr, Hall, E. A. \& Amma, E. L. (1969). J. Am. Chem. Soc. 91, 5745-5749.

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H atom parameters and a full list of bond angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39701 (41 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

